A generalization of Pythagorean theorem for any triangle
نویسندگان
چکیده
منابع مشابه
A Generalization of Routh's Triangle Theorem
For a given triangle T and a real number ρ we define Ceva’s triangle Cρ(T ) to be the triangle formed by three cevians each joining a vertex of T to the point which divides the opposite side in the ratio ρ ∶ (1 − ρ). We identify the smallest interval MT ⊂ R such that the family Cρ(T ), ρ ∈ MT , contains all Ceva’s triangles up to similarity. We prove that the composition of operators Cρ, ρ ∈ R,...
متن کاملA GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM
In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Generalization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky a fysiky
سال: 1899
ISSN: 1802-114X
DOI: 10.21136/cpmf.1899.122503